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A digital computer method for solving certain problems involving two- 
dimensional incompressible viscous flow is described. The time-dependent case 
is treated; the mathematical problem is thus that of solving a non-linear fourth- 
order partial differential equation in three variables. The choice of difference 
equations, of relaxation procedure, the kind of approximation to boundary con- 
ditions, and the resulting computational stability, speed, and accuracy are 
considered. Most experience so far has been for a rectangular region for which 
boundary velocities are prescribed as certain functions of time; an example of 
one such problem showing vortex formation and break-up is given. 

1. Introduction 
We describe here a computational method which seems to be effective for 

time-dependent two-dimensional viscous flow problems. The method itself is 
outlined in 0 3, and some remarks concerning details of procedure are given in Q 4. 
0 5 presents some computational results. 

Mathematically, the problem is that of solving numerically a non-linear fourth- 
order partial differential equation in three independent variables. It is known 
that, even without the added complications of time variation or non-linesrity, 
numerical techniques for fourth-order equations tend to require substantial 
computer time. The presence of non-linear terms may not only accentuate the 
computer time problem, but may also tend to induce computational instabilities. 
Moreover, the most natural boundary conditions to impose are usually those 
where boundary velocities are prescribed; this is equivalent to specifying the first 
derivatives of the unknown function on the boundary, and for a fourth-order 
equation such boundary conditions can be difficult to treat properly. 

As might be expected from their potential importance, viscous flow computa- 
tions have received considerable attention in the literature (Fromm & Harlow 
1963; Dix 1963; Hellums & Churchill 1961; Wilkes 1963 and Thompson 1961 are 
representative). In  general, it appears that there have been difficulties with one 
or another of computational speed, stability, accuracy, or the ability to handle 
correct boundary co,nditions. In  a problem of this general difficulty, it seems 
worth while to begin with the simplest possible problem possessing realistic 
boundary conditions. For this reason, most of our work to date has concerned 
the solution of the time-dependent Navier-Stokes equations in a rectangular 
region, on the edge of which the tangential and normalvelocities are prescribed for 
all time. Attention has been concentrated on the basic method itself; extensions 
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to permit curved boundaries, variable mesh spacings, multiple connectivity, or 
the presence of thermal or electromagnetic terms have yet to  be made. Most 
experimentation with the method has been in connexion with a test problem 
whose exact solution is known; accuracies of a fraction of a percent are obtained, 
even with time steps of up to 50 times those imposed by conventional stability 
limitations. The general method has also been applied to two problems whose 
solutions are not known. One of these concerns the injection of a fluid into a 
rectangular region; the results can here be verified by repeating the calculation 
with different space or time meshes. The second problem is a time-dependent 
version of a rotating disk problem, and is described in the following paper 
(Pearson 1965). 

2. Equations and boundary conditions 
In  terms of the usual Cartesian co-ordinates (x,y) and time t ,  the equations 

relating pressure p ,  and velocity components (u, v) for two-dimensional incom- 
pressible flow are 

(1) 

(2) 

ux+vv = 0, (3) 

P(%+ uxu + U V V )  = - Px +P("XX + u*v). 

P h  + vxu + vyv) = - Pv +P(VXX+ VyJ, 

where p is density and ,u is viscosity; subscripts denote partial differentiation. 
Equation (3) is equivalent to 

where $ is the stream function. The vorticity 6 is defined by 

u = &, v=-@ 2, (4) 

( 5 )  

(6) 

5 = - $(u, - v,) = -$A$ 

dtldt = t i  + tx $* - tg $% = VAt, 

and equations (1) and (2) may then be differentiated and combined to give 

where v = p/p is the kinematic viscosity. Equation (6), the vorticity transport 
equation, can be thought of as the condition that a pressure function p exist, 
with derivatives obtainable from (1) and (2). An equation forp may be obtained 

(7) 
from ( 1) and (2) : 

AP = 2 P W Z & l I - -  (@xu)". 

In  a multiply-connected region, $ as defined by (4) may be multiple-valued. 
The most usual case, however, is that in which the multiple-connectedness is 
caused by the insertion of an obstacle in the flow; since there is no net flow of 
fluid through the obstacle, $d@ = 0, so that in such a case $ remains single- 
valued. 

On a fixed solid boundary, we must have u = v = 0, or equivalently, 

a@las = a$/an = 0, (8) 

where these two derivatives are in the tangential and normal directions respec- 
tively. It follows easily from ( l ) ,  (2) and (5) that on such a boundary 

appn = 2 , ~  atlas, aplas = - 2 , ~  ag/an. (9) 
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It has been mentioned already that ( 6 )  is the condition that a pressure func- 
tion p ,  with derivatives given by (1) and (2), should exist; by Stokes's theorem 
this condition is equivalent to the requirement that 

P(B)  - P ( N  = 1; (Pxdz+PdJY) (10) 

be independent of the path joining A to B. However, this holds.only for paths 
linking A to B that may be continuously deformed into one another, so that- 
even if (6) is satisfied-p as determined from (10) could be multiple-valued for 
paths enclosing an obstacle. Sincep is a single-valued quantity, we must include 
in the formation of a problem the explicit requirement that the integral (10) be 
zero for any circuit enclosing an obstacle. 

3. Basic method 
In  using a finite-difference method, the object is to calculate the values of 

@ and ( at the intersections of the mesh lines shown in figure 1, for each discrete 
time step. Denote the mesh spacing by h, and the length of time step by dt; 
denote the values of @ and ( at x = ih ,  y = j h ,  t = ndt by @n(i,j) and En(i,j) 
respectively. In  general, we use a finite difference analqgue of (6) to compute 
tn+l ( i , j )  from known values of t n ( i , j )  and @n(i,j), for all i,j; in turn, values of 
@n+l(i,j) may then be obtained from the finite difference analogue of (5). 

The usual finite difference expression for A( at time n dt is 

A h t n ( i , j )  = h-'[("(i+ l , j )+En( i -  l , j )+En( i , j+ l )+Ef f l ( i , j - l ) -4 (n ( i , j ) ] .  (11) 

The finite difference form of (6) could be written so as to provide an explicit 
formula for En+l(i,j) in terms of En(i,j), A#(i,j), and certain first derivative 
products; however, Ahtn(i,j)  cannot be calculated for those points marked B in 
figure 1, since equation (1 1) cannot be applied there. (The boundary conditions 
prescribe @ and a@/an on the boundary, but not (, so we do not know En on 
points A.) Nevertheless, since the values of @n+l at points A and B can be deter- 
mined from the prescribed boundary conditions, a knowledge of tn+l in the 
innermost region C is enough, since we can then solve (5) as a Poisson equation 
in region C, using known values of @n+l on points B; thus @n+l in C could be 
determined. With all @n+1 now known, $n+l on points B can be determined from 
( 5 )  (using the values of @n+l at each surrounding point); these values of En+l on 
points B are, of course, necessary for the next time step, in order to compute 
Ahtn+l at such points as those marked D. 

Thus the two differential equation problems (5) and (6) are coupled together 
by the values of E on points B. However, the process so far described would be 
unsatisfactory in several respects; it is computationally unstable for large time 
steps, is not particularly accurate even for small time steps, and moreover, 
computes (n+1 for points B and C by different procedures. We consider next the 
matter of calculating (n+l at points in region C in a more accurate manner. If 
the term gt in (6) is replaced by [P+l(i,j) - f ;"( i , j ) ] /dt ,  then it is clearly more 
accurate to use values of 6 and @ in the rest of the equation as determined for 
time ( n  + $) dt, rather than for time n dt. Thus we should, for example, replace 
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A,["(i, j) by +[A,["(i,j) + Ah["+'(i,j)]. However, the calculation of Aht"+l(i,j) 
requires a knowledge of gn+l(i,j), so that the use of this kind of averaging process 
in the finite difference equations results in the equations becoming implicit, 
rather than explicit; we obtain a set of algebraic equations with as many 
unknowns as there are mesh points. Nevertheless, since the explicit process 
described before is computationally stable only for very small time steps at, and 
even then only if the non-linear terms in (6) are small, and since the implidit 
method does not have this defect, this change to an implicit process is of crucial 
importance. 

The implicit equation is 

[t"+l(i,j) - t"(i,j)l/at = ( V / W  [4Aht";li,j) + gAht"+'(i,j)l 
+ ( 1/16ha) [tfi+'(i,j + 1) + t"(i,j + 1) - E"+'(i,j - 1) - ["(i,j - I)] 

x [p"+'(i+l,j)+p(i+ l,j)-$fi+'(i- l,j)-$fi(i-l,j)-J 

x [+"+'(i,j + 1) + +"(i,j + 1) - p+yi , j  - 1) - $fi(i,j - l)]. 
- ( l /16h2)[~"+1(i+l , j )+~"(i+ l,j)-E"+'(i- l ,j)-["(i-l ,j)]  

(12) 

1t.will be observed that centred space differences are used. Equation (12) is 
solved by successive optimal over-relaxation sweeps (see Forsythe & Wasow 
1960); for a rectangular region, the optimal over-relaxation parameter can be 
explicitly calculated. 

Again, this process cannot include points B in figure 1. Moreover, since 
values of P+l at points B occur when (12) is applied to points D, we must use 
guessed values for En+' at points B, which are corrected after values of @"+l have 
been determined by use of (5). Thus an iterative process is required, in which the 
'hinge' values of ["+l at points B are successively corrected. This same iteration 
process allows us to generate successively improved values for yP+l for use in (12). 
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From (5), we obtain 
["+'(i,j) = - ( 1/2h2) [Ah$'n+l(i,j)], (13) 

which can be solved for $n+l(i,j), again by successive optimal over-relaxation, 
from known values of En+' in region C, and from given boundary values of $n+l 

on points B. 
The iterative process just described, in which (12) and (23) are solved 

repeatedly in sequence until values of En+' and +"+l no longer change, is very 
sensitive to the values of Em+1 on points B. To avoid instabilities, it is necessary 
to introduce a smoothing parameter, so that the 'new' values of En+' at points B 
obtained in each iteration sweep are taken to be weighted averages of the 'old' 
values and the values obtained by applying (13) to points B. Similarly, when 
the non-linear terms in (12) are large, the $n+l coupling evident in the last two 
terms can lead to instability, and for that reason the new internal values of P+l 
as obtained by solving (12) are also weighted with the previous values. 

In  determining the values of $m+l on points B, as determined from prescribed 
values of $ and a$/an at time (n + 1) St on the boundary, it is necessary to 
use a formula accurate to  second-order terms (since the second-order $ terms 
are not negligible in the vorticity calculations). Thus, for example, at time 
t = (%+ 1)6t, 

$(B) = $(A) + h a$(A)/an + &h2 az$(A)/an2 + . . .. (14) 

Here $(A) and a$(A)/an are prescribed, but P$(A)/an2 must be determined from 
P+'(A), which in turn can be obtained by extrapolation from En+l(B) and 
tn+1(D). It is clear that (14) will then also be an ingredient in the iterative 
process. 

Finally, we may remark that (12) is very rapidly solved by the over-relaxation 
process when the non-linear terms are small (because the main diagonal terms 
are strongly dominant); if the non-linear terms are large, equation (12) is unsatis- 
factory and must be replaced by an implicit alternating direction method. The 
method chosen is based on that devised by Peaceman & Rachford (1966) for 
diffusion problems. Each time-step is now covered in two half-steps: 

[E"+*(i,j) - E"(i,j)]/& st = (u/h2) [,p+*(i + 1,j)  + p+qi - 1,j)  - 2%+*(i,j) 

+ g y i , j  + 1) + P(i,j - 1) - 2E"(i,j)] 

x [$$"+'(i+ l,j)+$$"(i+ l,j)-$$n+'(i- l,j)-&Pyi- l,j)] 
+ ( 1/4h2) [gn(i,j + 1) - C"(i,j- I)] 

+ ( 1/4h2) [P+*(i + 1,j)  - cn+t(i - l,j)] 

x [$$n+l(i,j + 1) + f$"(i,j + 1) - &$n+l(i,j- 1) - &,hn(i,j - l)], (15) 
[t"+'(i,j) - g-"+*(i,j)]/9 6t = ( V p )  [p+*(i + 1,j)  + En++ - 1,j)  - 2E"+*(i,j) 

+ p+yi,j  + 1) +'g"+'(i,j - 1) - 2f["+l(i,j)] 

x [$$"+'(i+ l,j)+*$.(i+ l,j)-&P+l(i- l,j)-$$"(i- l,j)] 

+ ( 1/4h2) [cn+'(i,j + 1) - En+'(i,j - l)] 

+(l/4hz) [["+*(i+ l,j)-cn+*(i- l,j)] 

x [$+"+'(i,j + 1) + $@m(i,j + 1) - $$"+'(i,j- 1) - &+"(i,j - l)]. (16) 
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Each coefficient matrix is tri-diagonal, so that one double sweep of Gaussian 
elimination solves each equation set. 

We now list the steps in the computational procedure required to go from 
time n 6t to time (n + 1) St. It is assumed that values of tn and $n are known, 
and it is desired to find values of Cn+l and @n+l: 

(a) Obtain a first approximation for (%+I and @n+' at each required interior 
mesh point by time extrapolation from previously computed values of C and $. 
Insert values of @n+l on points A, as given boundary conditions. 

( b )  Solve (12) (or (15) and (16)) to give Cn+l(C). 
(c )  Use (la), with specified boundary values of a$/& at time (n+ 1)6t, to 

compute approximate values of $n+l(B). 
(d )  Using these values of $n+'(B) on the boundary of region C, solve (13) to 

give @"+l(C). 
( e )  Use (13) to obtain revised values for tn+I(B), but use a 'smoothed' result, 

as obtained by weighting with previous values. 
(f) Repeat step ( b ) ,  to give revised values of [n+l(C). Again, weight these 

revised values with the previous values, so as to produce 'smoothed' revised 
values. 

(9) Repeat the whole process iteratively until convergence has resulted. The 
time step is then complete. 

4. Remarks 
(a) If an explicit equation were used instead of (12), the usual stability 

criterion would require vSt < th2 (if the non-linear terms had no effect). To 
minimize the effect of the non-linear terms, right-handed or left-handed space 
derivatives have been suggested (Hellums & Churchill 1961); not only does this 
result in a loss in accuracy, but the requirement of taking very small time steps 
is not avoided. 

In general, there are three considerations governing the choice of St; these are 
computational stability, accuracy, and compatibility with boundary data. By 
the last requirement is meant that St must be reasonably small compared to the 
time scale over which boundary data is changing. 

A difference equation scheme which has sometimes been suggested (see, for 
example, Fromm & Harlow 1963) is that of DuFort & Frankel (1953). This 
consists in replacing ( 12) by 

[[fi+'(i,j) - p I ( i , j ) ] / 2  st = @/ha) [(n(i,j + 1) + C*(i,j- 1) 
+ p ( i  + 1 , j )  + gyi - 1,j)  - 2,p+'(i,j) - 2(n-l(i,j)-J 

+other terms. (17) 

Equation (17) is essentially in explicit form, and moreover has better stability 
properties than the usual explicit analogue of (12). However, as recognized by 
DuFort & Frankel themselves, a truncation-error analysis of (17) shows that 
the accuracy of the difference approximation is much less than that of either the 
explicit equation or of (12). In  fact, i t  usually turns out that, for reasons of 
accuracy, one must impose a St limitation similar to that required for stability 
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of the explicit equation. These expectations have been verified by computational 
experimentation with the test problem to be described; in a typical trial (with 
u St/h2 = 4), the DuFort-Frankel equation gave errors averaging 2.3 %, whereas 
the implicit equation gave errors averaging 0.0 12 % . 

In  equation (12), there is an equal contribution of terms in n and in n + 1 on 
the right-hand side. Experiments were run for various cases of unequal contribu- 
tions, but no advantages were found to ensue. 

If the non-linear terms in (6) were, instead, linear in $ with constant coefficients, 
then the usual kind of stability analysis shows that (12) is unconditionally stable 
for all at. Experience indicates that this property seems to carry over to the 
non-linear case; moreover, (12) gives high accuracy even with large St, so that, 
in many problems, the use of (12) can result in substantial savings in computer 
time. 

v&/ha 
51.2 
51.2 
51.2 
51.2 

12.8 
12.8 
12.8 
12-8 

3.2 
3.2 
3.2 
3.2 

Q 
0.80 
0.85 
0.90 
0-95 

0.80 
0-85 
0.90 
0.95 

0.80 
0.85 
0.90 
0.95 

TABLE 1. 

I 
No convergence 

23 
34 
50 

No convergence 
13 
16 
40 

No convergence 
10 
16 
28 

~~ ~ 

(b )  Analysis shows that (15) and (16) are also unconditionally stable (if the 
non-linear terms are approximated locally by linear terms). A discretization 
error analysis shows that (15) and (16) are remarkably close to (12) in accuracy, 
and again this was confirmed experimentally for the problem to be described in 
3 5. For situations where the non-linear terms are large, (15) and (16) may be 
somewhat less accurate than (12), but, for large non-linear terms, (12) requires 
many relaxation sweeps. 

(c )  The optimal over-relaxation process for (12) was so fast (at least for the 
case of small non-linear terms) that i t  seemed worth while to try an optimal 
over-relaxation process for the fourth-order equation in $ obtained by com- 
bining (5) and (6). The optimal over-relaxation parameter was determined 
experimentally. The results were very unsatisfactory; it apparently takes an 
order of magnitude more computer time to solve the single equation by optimal 
over-relaxation than it does to solve the coupled equation set. 

(d) The result of the iteration process is that all equations are satisfied exactly 
at all points; thus the fact that different methods are used for points B and C is 
of no significance. The effect of the smoothing parameter at the boundary is 
interesting; for a case in which the non-linear terms were small, so that no 
‘internal’ smoothing was required, the results in table 1 were obtained. Here Q 
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is the weighting factor (proportion of old value), and I is the number of iterations 
required for convergence. The calculations were carried out with a total of 
400 mesh points. 

When internal smoothing was also used (and if the non-linear terms were 
large, it was essential to do so), the convergence speed was found to increase even 
for those cases when there was already convergence without its use. In  a typical 
case, the requisite number of iterations was cut by a third. 

(e) If the last term in (14) was not included, experience showed that errors 
in 6 near the boundary of up to 50 % could result. Incidentally, the inclusion 
of this term means that the boundary really is at points A, and not at some 
position ‘in-between’ points A and B. 

It is possible to hinge together the two equations, (5) and (6), at points A 
rather than at points B. To do this, values of must be obtained at points A. 

$(B) = $(A) + h a$(A)/an + $h2 az$(A)/an2 + 4h3 a3$(A)/8n3 Since 

and $(D) = $(A) + 2h a$(A)/an+ 3(2h)2 az$(A)/an2 + Q(2h)3 a3$(A)/8n3 (18) 

and since $(A) and a$(A)/an are specified as boundary conditions, P$/anz can 
be obtained by elimination between these two equations. The fact that the 
second derivative of $ along the boundary is known then permits E at A to be 
computed. This type of boundary connexion between equations (5) and (6) may 
be particularly useful for regions with re-entrant corners; preliminary experi- 
mentation by Dr R. Esch with the present method, but with (14) replaced by (18), 
indicates that accuracy and convergence speed are comparable. Equation (18) 
has been used by Wilkes (1963) in a viscous heat-conduction problem; (16) and 
(16) were also used by Wilkes, but no iteration on boundary vorticities was 
carried out. 

If the boundary conditions involve a prescription of stream function and 
vorticity rather than the normal derivative of the stream function, then equa- 
tions (6) and (6) are largely decoupled and the problem is much easier. This is 
the method used by Fromm & Harlow (1963); boundary values of E were given 
approximate values based on their values as obtained for a simpler problem. 
Fromm & Harlow used the DuFort-Frankel equation; their region was multiply 
connected, but apparently equation (10) was not satisfied for each of the two 
possible circuits. 
(f) Further details of the method, and calculations of stability, etc., will be 

found in Pearson (1964). 

5. Results 
An exact solution of equations (5) and (6) is given by 

$ = exp ( - 2n2t) cos nx COB ny 

with v = 1. The region of interest is the quarter-wave region 0 < x < 3, 
0 < y < $. Most of the computer experimentation was based on this problem, 
where exact and computed results could be compared. The non-linear terms 
vanish for the exact solution but do not quite vanish in the difference equation 
approximations; thus, any instability caused by their presence would be 
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detected. The method described in $ 3  gave excellent results for this problem. 
A typical case is that in which there are 400 mesh points, with 6t/h2 = 3.2 (which 
is 8 times the stability limit for the explicit equation, or the equivalent accuracy 
limit for the DuFort-Frankel method); table 2 compares calculated and exact 
values of $ and 6 at a point 3 mesh spaces in from each side, at each of a number 
of different times. Here I is the number of iterations. The boundary conditions 
consisted in a specification of exact values of $ and a$/an. 

t 

0 
0.002 
0.004 
0.006 
0.008 
0.010 
0.012 
0.014 
0.016 
0.018 
0.020 
0.022 

0-034 
0.036 

0.054 
0.056 

II. W C . 1  

0.97552824 
0-93773540 
0.901427 16 
0.86653421 
0.83299073 
0.80074665 
0.76974986 
0.73995353 
0-71131037 
0.68377611 
0.65730756 
0.63186368 

0.49859951 
0.47929906 

0-33596905 
0.32296392 

II. (exmt) 
0.97552824 
0.937 7662 1 
0.90146594 
0.86657084 
0.83302648 
0.80078062 
0-76978296 
0.73998519 
0.71134090 
0.68380538 
0-65733575 
0.63189074 

0.49862087 
0.47931961 

0.33598344 
0.32297777 

E (calc.) 
9.6231221 
9.241 1754 
8.8787761 
8-5378473 
8.2065818 
7.8892688 
7.5835788 
7.2902472 
6.5575255 
6.7367162 
6.4758809 
6.2823232 

4.9122772 
4.7221233 

3.3100098 
3.1818811 

5 (exact) 
9.6280778 
9-2553814 
8.8971 122 
8-55271 12 
8.221 6416 
7.9033878 
7.5974532 
7-303361 1 
6.5670896 
6.7488886 
6.4876438 
6.2947859 

4.921 1907 
4.7306949 

3.3 160236 
3.1876627 

I 

23 
20 
18 
13 
14 
5 
4 
5 
4 
4 
4 

4 
4 

3 
3 

- 

TABLE 2. 

The running time, through a time equal to the time constant of the problem, 
was about 5 hour on an IBM 7090 computer. 

A fluid-injection problem, whose solution was not known, was also analysed. 
The region of interest was here 0 < x < 1, 0 < y < 1, and the boundary condi- 
tions were taken as 9 = $n = 0 on all sides other than the side y = 0. On y = 0, 
the boundary condition chosen was 

$ = lO(cos 2nx- 1) (1 -e-lON), $n = 0. (19) 

Again, non-dimensional variables were used, so that v = 1. Equation (19) 
corresponds to fluid being injected in the interval 0 < x < 3 and withdrawn in 
the interval 4 < x < 1, directions of both injection and extraction being perpen- 
dicular to the side y = 0. The time-step chosen was 6t = 0.001, and it was found 
that the choices 6t = 0-0005, 6t = 0.002, did not appreciably alter the results, 
nor the number of iterations required per time step. The space interval was 
h = 0.025, corresponding to a total of 1681 mesh points. Table 3 shows values of 
$ obtained, with the three different choices for &, at t = 0-002, and on the first 
10 mesh points on the row y = 0.25. 

With 6t = 0.001, the first time-step required 15 iterations for convergence, the 
fourth 15 iterations, and the eighth 10 iterations. The motion was essentially 
steady-state by the 36th time-step; here 3 iterations were required. The boundary 
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smoothing parameter used was 0.85; no internal smoothing was required. The 
h a 1  steady-state stream-function plot is shown in figure 2. The closed contour 
represents reverse flow. 

6t = 0.0005 6t = 0.001 6t = 0.002 

0.0 0.0 0.0 
- 0.031 - 0.032 - 0.034 
- 0.105 - 0.106 -0.111 
- 0.203 - 0.204 - 0.209 
-0.311 - 0.312 - 0.317 
- 0.425 - 0.426 - 0.429 
- 0.541 - 0.541 - 0.543 
- 0.657 - 0.657 - 0.657 
- 0.772 - 0.772 - 0.770 
- 0.885 - 0.884 - 0.881 
- 0.994 - 0.993 - 0.989 
- 1.098 - 1.098 - 1.092 

TABLE 3. Comparison of $-values for various time-step sizes 

FIGURE 2. Stream-function contours for re-entrant viscous flow. 
Amplitude = 10; time = 0.036. 

With the amplitude in equation (19) increased by a factor of 10, the final 
steady-state flow pattern shown in figure 3 was obtained. 

With the amplitude increased by a further factor of 10, the patterns shown in 
figures 4 and 5 were obtained at times 0.010 and 0.022. It was now essential to 
use internal smoothing; otherwise, computational instability would set in at 
about t = 0.01. Figures 4 and 5 were obtained with 400 mesh points, so that 
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figure 5 in particular is probably not too accurate, since the scale of motion is 
now approaching the mesh size. Nevertheless, the way in which the reverse flow 
region of figure 4 has been pinched off into two halves so as to result in the con- 
figuration of figure 5 is interesting. Although the boundary conditions are 
symmetric, the differential equations are not (because of the non-linear terms), 

FIGURE 3. Stream-function contours for re-entrant viscous flow. 
Amplitude = 100; time = 0-050. 

FIGURE 4. Stream-function contours for re-entrant viscous flow. 
Amplitude = 1000; time = 0.010. 
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FIU~RE 5;. Stream-function contours for re-entrant viscous flow. 
Amplitude = 1000; time = 0.022. 

so that it is not surprising that the flow patterns depicted in these various figures 
are unsymmetrical. 

The author wishes to express his appreciation to Dr Robin Esch for numerous 
stimulating and helpful discussions during the course of the development of the 
present method. 
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